Sharp Spectral Bounds on Starlike Domains

نویسنده

  • R. S. LAUGESEN
چکیده

We prove sharp bounds on eigenvalues of the Laplacian that complement the Faber–Krahn and Luttinger inequalities. In particular, we prove that the ball maximizes the first eigenvalue and minimizes the spectral zeta function and heat trace. The normalization on the domain incorporates volume and a computable geometric factor that measures the deviation of the domain from roundness, in terms of moment of inertia and a support functional introduced by Pólya and Szegő. Additional functionals handled by our method include finite sums and products of eigenvalues. The results hold on convex and starlike domains, and for Dirichlet, Neumann or Robin boundary conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Bounds on the PI Spectral Radius

In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.

متن کامل

Coefficient bounds for some subclasses of p-valently starlike functions

Coefficient bounds for some subclasses of p-valently starlike functions Abstract. For functions of the form f(z) = z+ ∑∞ n=1 ap+nz p+n we obtain sharp bounds for some coefficients functionals in certain subclasses of starlike functions. Certain applications of our main results are also given. In particular, Fekete–Szegö-like inequality for classes of functions defined through extended fractiona...

متن کامل

Initial coefficients of starlike functions with real coefficients

The sharp bounds for the third and fourth coefficients of Ma-Minda starlike functions having fixed second coefficient are determined. These results are proved by using certain constraint coefficient problem for functions with positive real part whose coefficients are real and the first coefficient is kept fixed. Analogous results are obtained for a general class of close-to-convex functions

متن کامل

The Fekete-Szegö Problem for p-Valently Janowski Starlike and Convex Functions

For p-valently Janowski starlike and convex functions defined by applying subordination for the generalized Janowski function, the sharp upper bounds of a functional |a p2 − μa 2 p1 | related to the Fekete-Szegö problem are given.

متن کامل

Neighbourhoods and Partial Sums of Starlike Functions Based on Ruscheweyh Derivatives

In this paper a new class S p (α, β) of starlike functions is introduced. A subclass TS p (α, β) of S λ p (α, β) with negative coefficients is also considered. These classes are based on Ruscheweyh derivatives. Certain neighbourhood results are obtained. Partial sums fn(z) of functions f(z) in these classes are considered and sharp lower bounds for the ratios of real part of f(z) to fn(z) and f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012